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Magnetic ordering and spin reorientation in ErGa3
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Calorimetric measurements between 0.3 and 10 K have been made on a single crystal of the AuCu3-type
cubic compound ErGa3 . The temperature dependence of specific heat exhibits an antiferromagnetic ordering-
induced peak near 2.7 K, a second peak at 2.5 K due to spin reorientation, and a Schottky anomaly with
crystal-field parametersx50.17 andW50.22 K, all in agreement with the results from neutron studies. The
sum of the calculated entropies associated with the order-disorder process (R ln 2) and the crystal-field effect,
respectively, is lower by 0.1R than the experimentally derived magnetic entropy values at approximately 6–10
K. This difference provides an estimate of a 2-J/mol latent heat for the spin rotation process. An anticipated
transition from an amplitude-modulated magnetic structure to an equal magnetic-moment structure at tempera-
tures nearTN/2 was not observed.

DOI: 10.1103/PhysRevB.66.212404 PACS number~s!: 75.10.2b, 75.40.2s
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Rare-earth-based compounds often undergo magneti
dering, some of them followed by spin reorientation at low
temperatures. Among the different experimental techniqu
calorimetric measurements play a unique role in provid
thermodynamic quantities including energy and entropy
sociated with these processes. In a recent paper1 on Er3Ge4 ,
a specific-heat peak at 7 K and a second one at 3.5 K con
firmed the antiferromagnetic ordering and a spin reorien
tion, respectively, suggested by neutron diffraction. A siza
latent heat was obtained for the second transition. This re
describes a similar work from 10 down to 0.3 K on anoth
Er-intermetallic ErGa3 . An antiferromagnetic transition in
this compound was first identified by Morinet al.2 More
extensive dc magnetization and neutron-diffraction stud
by Murasik et al.3,4 indicated that the ordering at the Ne´el
temperatureTN52.83 K occurred through a continuous tra
sition and the magnetic structure appeared to be an inc
mensurate sinusoidally modulated one. Furthermore, they
vealed two successive spin reorientations in zero app
field atT152.6 K andT2 in the vicinity of TN , respectively.
With lowering temperature one may expect the amplitu
modulated structure to evolve or transit toward an equal m
ment structure, of an antiphase type if it remains incomm
surate or simple commensurate.

ErGa3 single crystals were grown by the molten-me
solution method. The melt of composition of 90-at. % G
(6N) and 10-at. % Er (3N) was slowly cooled from 920 °C
to 350 °C at the rate of 0.8 °C/h before a rapid cooling
avoid the formation of ErGa6 in a peritectic reaction. This
procedure yielded single crystals of stoichiometric ErGa3 im-
mersed in an excess of pure gallium, which was easily
moved. The high quality of the crystals was confirmed
x-ray diffraction showing the expected cubic AuCu3-type
structure. Complemented by ac susceptometry, calorime
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measurements were made using a thermal-relaxation
proach. A milligram-size specimen was thermally ancho
with a minute amount of grease to a sapphire holder, wh
had a Cernox temperature sensor and a nickel-chromium
loy film as the Joule-heating element. The holder was link
thermally to a copper block by four Au-Cu alloy wires. Th
temperature of the block could be raised in steps but h
constant when a heat pulse was applied to the specim
Following each heat pulse, the specimen temperature re
ation rate was monitored to yield a time constantt. Heat
capacity was then calculated from the expressionc5kt,
wherek is the thermal conductance of the Au-Cu wires. T
heat capacity of the specimen holder was measured s
rately for addenda correction. The specific heat of the sp
men was then obtained fromC5(c2caddenda)/(m/M ) with
m and M being the specimen mass and the molar mass
ErGa3 ~376.42 g/mol!, respectively.

Figure 1 presents the temperature dependence of the
cific heat of ErGa3 . Also shown are the data for an isostru
tural but nonmagnetic reference compound LuGa3, which
were obtained using a quasiadiabatic heat-pulse techniqu
Wroclaw. There are two maxima for ErGa3 , more clearly in
the inset, at 2.5 and 2.7 K, respectively. The high
temperature peak is believed to be associated with the a
ferromagnetic ordering, even though 2.7 K is lower than
Néel temperatureTN52.83 K as determined from magnetic
susceptibility measurements.3 Such a phenomenon may b
expected in systems with incommensurate amplitu
modulated magnetic structures when contribution of hig
harmonics to the order parameter is large enough.5 The peak
at 2.5 K undoubtedly corresponds to the afore-mention
T1 , arising from an abrupt reorientation of Er31 spins from
nearly the^110& direction towards thê100& axis.3 However,
judging from the calorimetric data below 2.5–0.3 K, there
©2002 The American Physical Society04-1
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FIG. 1. Temperature dependence of spec
heat of ErGa3 ~1! and the nonmagnetic referenc
compound LuGa3 ~solid curve!. Also shown for
ErGa3 are the magnetic contribution~s!, C(m)
5C2C(LuGa3), and the calculated Schottk
contribution ~dashed curve! for comparison. In-
set: Expanded plot revealing two peaks at 2.5 a
2.7 K, respectively.
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no observable anomaly nearTN/2. It indicates that the squar
ing of the amplitude-modulated magnetic structure of ErG3
goes through an evolution of higher-order harmonics of
order parameter.6

The magnitude of the spin rotation effect in Fig. 1 is re
tively small as compared to that in Er3Ge4 .1 It is understand-
able, realizing that the complex magnetic behavior of ort
rhombic Er3Ge4 arises from the intrinsic magnetic frustratio
caused by two nonequivalent Er31 sites. In contrast, cubic
ErGa3 has a much higher structural symmetry, and the tr
sition atT1 involves only a relatively minor moment tilting
It is not surprised then that the other transition atT2 nearTN
has no distinguishable effect on specific heat.

In analyzing the calorimetric data, the total specific h
needs first to be delineated into its lattice, electronic, a
magnetic contributions:

C5C~ l !1C~e!1C~m!. ~1!

This is done by assuming that the lattice plus electronic c
tributions are equal to the specific heat of nonmagn
LuGa3 (g56.7, b50.47 mJ/mol K4 with a corresponding
uD5161 K). The magnetic contribution C(m)5C
2C(LuGa3) is then calculated and shown as a function
temperature in Fig. 1. It actually contains three compone

C~m!5CO-D1Csr1CSch. ~2!

CO-D and Csr are associated with the order-disorder~O-D!
process and the spin rotation, respectively, whereasCSch is a
Schottky term originating from the crystal-field~CF! split-
ting of the 4I15/2 multiplet of Er31 ions.CO-D andCsr domi-
nateC(m) belowTN . The short-range-ordering contributio
persists to almost 6 K. In general, one does not have an
handle on critical phenomena, but the paramagnetic beha
of CSch can be determined from

CSch/R5~^E2&2^E&2!/kB
2T2, ~3!
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whereR and kB are the gas constant and Boltzmann’s co
stant, respectively, and a statistical average over the CF
els with energyEi is defined as

^x&5

(
i 51

n

xi exp~2Ei /kBT!

(
i 51

n

exp~2Ei /kBT!

. ~4!

Accordingly, the experimental data ofCSch>C(m) between
approximately 6 and 10 K are reasonably well fitted by C
parametersx50.17 andW50.22 K, following the scheme o
Lea, Leask, and Wolf.7 These parameters give a doubletG7

as the ground state, a quartetG8
(1) at 28 K as the first-excited

level, and an overall CF splitting equal to 110 K. They agr
very well with parametersx50.19 andW50.25 K deter-
mined directly by inelastic neutron scattering.4

It is possible to obtain a reasonable estimate of the la
heat associated with the spin rotation from entropy consid
ation. Figure 2~a! shows a plot ofC(m)/T versusT, from
which the magnetic entropy is derived from

S~m!5E @C~m!/T#dT ~5!

and presented in Fig. 2~b!. Following Eq. ~2!, S(m) also
consists of three components:

S~m!5SO-D1Ssr1SSch5E ~CO-D /T!dT1E ~Csr/T!dT

1E ~CSch/T!dT. ~6!

While the exact determination ofCO-D and Csr is difficult,
one has nevertheless a maximum value ofSO-D5R ln 2 or
SO-D /R50.693 for the ground-state doublet of Er31 ions. At
4-2
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FIG. 2. ~a! C(m)/T versusT as basis for en-
tropy calculations.~b! Temperature dependenc
of magnetic entropy. Note theSsr-caused parallel
difference above;6 K between the experimenta
data~d! and the solid line, which represents th
sum ofR ln 2 for SO-D andSSch ~dashed line! as-
sociated with the CF splitting.
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a first look, the experimental value ofS(m)/R in Fig. 2~b! is
indeed close to 0.7 atTN . However, the maximumSO-D

value would not be achieved until all short-range order
beyondTN vanishes. Judging from Fig. 1, this needs to rea
somewhere close to 6 K. Consequently, the seemingly c
cidental observation ofS(m)/R> ln 2 at TN gives a clear
signal of theSsr contribution belowTN , whereSSch is neg-
ligible.

Finally, if the spin rotation were absent, the expec
S(m) between approximately 6 and 10 K should follow t
solid line in Fig. 2~b!, which represents simply the sum o
R ln 2 andSSch as calculated from the calorimetrically dete
mined crystal-field parameters. Instead, the actually obse
S(m) values are higher by a roughly temperature indep
dent 0.1R, a quantity now assigned toSsr. Since this spin
rotation occurs near 2.5 K,Ssr>0.1R50.83 J/mol K would
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lead to a small latent heat of the order of 2 J/mol. In co
parison, it is 30 or 10 J/mol Er in Er3Ge4 .

In conclusion, calorimetric data of ErGa3 support the
findings from magnetic and neutron studies on magn
transitions atTN and T1 , with additional information in
terms of the associated entropy and latent heat. No indica
of an additional phase transition atTN/2 is observed in the
presented data, contrary to the expectations. The anticip
transition nearTN/2 is from the amplitude-modulated mag
netic structure to an equal magnetic-moment structure. M
likely, with the temperature lowering this structure evolves
an antiphase one through growing of higher-order harmon
in the order parameter.
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